The DE-AoP project included RT-qPCR and immunohistochemistry data, which were analysed in R (R Core Team, 2023). Data were modeled through the Generalized Linear Mixed Model (GLMM) framework, using the glmmTMB package (Brooks et al., 2017). Random intercepts were added to account for the correlation between pseudo-replicates.
The optimal likelihood families were selected based on our theoretical understanding of the variable’s properties, and to minimize Aikake’s Information Criterion (AIC). Count data (e.g., cell counts, number of maze entries, …) were modeled using a Generalized Poisson likelihood, measures bound at 0 (e.g., cell density, volumes, weights, …) were modeled using a Gamma likelihood, and proportions (e.g., ratios of areas) with a Beta likelihood.
Model diagnostics were done using the DHARMa (Hartig, 2022) & performance (Lüdecke et al., 2021) packages, and estimated marginal means/contrasts were computed with the emmeans package (Lenth, 2022).